If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2+11b+6=0
a = 4; b = 11; c = +6;
Δ = b2-4ac
Δ = 112-4·4·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-5}{2*4}=\frac{-16}{8} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+5}{2*4}=\frac{-6}{8} =-3/4 $
| -2(x+4)=18. | | 5m–3=52 | | 10m/3=15 | | 3/7x+11=25 | | 9m–6= 2m+1 | | 36x^+49-84x=0 | | 5h+4=11h-62 | | 4(x+8)=44. | | -4(2-x)=4/5(x+14) | | (7x+12)=(-4x–17) | | 3y4=15 | | 2x^2-2x=-7x+3 | | 10m=8 | | 3x7+11=25 | | 7d-5=26 | | Y=19.2x+-0.3 | | 2=(5n–4) | | (-m/7)=1 | | 12x+-5=65 | | 2p°+20°=70° | | 0-14.7=9.8x1.5 | | 5t−9=26 | | 6(b–10)=3(b–8) | | 0.5h−4=7 | | (0+1)(2p-3)+2=0 | | (2x−2)+(x+1)+x+(x+1)=50 | | 3x+3x+3x+3x=324 | | 150°=2x°+100° | | 3y/36=36/3= | | x=2.34+(-23.40)*2.48 | | 8(2d-3)=( | | 8x-4(4x+3)=12 |